EKLF/KLF1 Controls Cell Cycle Entry via Direct Regulation of E2f2
نویسندگان
چکیده
منابع مشابه
EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2.
Differentiation of erythroid cells requires precise control over the cell cycle to regulate the balance between cell proliferation and differentiation. The zinc finger transcription factor, erythroid Krüppel-like factor (EKLF/KLF1), is essential for proper erythroid cell differentiation and regulates many erythroid genes. Here we show that loss of EKLF leads to aberrant entry into S-phase of th...
متن کاملp27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability.
The cyclin-dependent kinase (CDK) inhibitor p27(kip1) is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27(kip1)-null mice is reverted by co...
متن کاملRecruitment of Cln3 Cyclin to Promoters Controls Cell Cycle Entry via Histone Deacetylase and Other Targets
In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 hist...
متن کاملRegulation of store-operated Ca2+ entry during the cell cycle.
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathway...
متن کاملE2F2 represses cell cycle regulators to maintain quiescence.
E2F transcription factors control diverse biological processes through regulation of target gene expression. However, the mechanism by which this regulation is established, and the relative contribution of each E2F member are still poorly defined. We have investigated the role of E2F2 in regulating cellular proliferation. We show that E2F2 is required for the normal G(0)/G(1) phase because targ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2009
ISSN: 0021-9258
DOI: 10.1074/jbc.m109.006346